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Abstract

I discuss the effects of competition among managers within a class of investment funds. I

assume that the fund class has a finite set of profitable investment opportunities. I show a con-

nection among economies of aggregate scale, the curvature of the flow-performance relation,

and the distribution of surplus among investors and managers. Initially, the fund class operates

under increasing returns to aggregate scale. The flow-performance relation is concave, and

the investor surplus gradually dominates the manager surplus. As the investment opportunities

within the fund class diminish, the returns to aggregate scale reverse to decreasing, the flow-

performance relation becomes convex, and the total surplus declines to zero. The aggregate

risk is reduced through “closet indexing”. The average returns from active investing are not

persistent, and the fund class transforms eventually to a scalable pool of passively invested

capital.
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I. Introduction

A fundamental question about asset management is whether the investor benefits more from

active than passive strategies. In a pioneering paper, Berk and Green (2004) show that a single fund

manager can extract all the surplus from investment by optimally increasing his fee. I focus on the

competition among managers for investor capital and superior performance. The implications for

fees, returns, risk, size, and the distribution of surplus among investors and managers are related

to the investment opportunities within a class of funds. I show that competition diminishes these

opportunities as the total number of funds increases over time.

Themodel provides an empirically testable connection between the effect of size on fund returns

and subsequent investor flows. The declining availability of profitable investment opportunities

implies a life cycle for the fund class. Managers in incipient fund classes create a new market

and provide liquidity to investors by reducing the cost of active investing. The aggregate demand

increases as more talented cohorts of managers replace previous incumbents. As a result, the fund

class experiences increasing returns to aggregate scale. The investor flows are more sensitive to

bad performing and less sensitive to good performing managers. This implies a concave flow-

performance relation. The opposite is true for mature fund classes with a large number of funds

and limited profitable opportunities. The fund class operates under diseconomies of aggregate

scale, and the flow-performance relation is convex.

Two features define a fund class in the model. The first is its benchmark, namely a unique risk

and return relation that reflects the underlying securities and the strategies used by the incumbent

managers. The second feature is the finite supply of profitable opportunities that are available on

aggregate. Each fund class is subject to a regulatory regime that limits the set of permissible active

strategies. The regulatory constraints limit the opportunities for abnormal returns within the class.

For instance, equity mutual fund managers are not permitted to short stocks. As a result, they must

abstain from shorting strategies.

The managers enter the fund class with an exogenous level of talent that affects their returns
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from active investing. The key variables in my model are the cross-sectional mean and variance of

managerial talent. The mean provides a standard of comparison among the incumbents and defines

the benchmark for the fund class. A fund’s abnormal return (alpha) is its risk-adjusted return in

excess of the benchmark. The cross-sectional variance of talent is a proxy for the availability of

profitable opportunities within the fund class. A large dispersion allows the most talented managers

to outperform their benchmark by a wide margin and yield large abnormal returns. On the other

hand, the managers are alike in talent when the variance is low. The homogeneity in talent suggests

that the managers crowd into similar trading strategies and investment opportunities, resulting in

low alphas overall. The opportunities for abnormal returns within the fund class eventually deplete

as the cross-sectional variance is reduced to zero.

During the outset of the life cycle, a small population of managers create a market and supply

liquidity to investors by injecting capital into unexploited profitable opportunities. These opportu-

nities would be unavailable or too costly for the investors to capture on their own. Similarly to Berk

and Green (2004), the managers can extract parts of the total surplus from investment by indexing a

fraction of their assets under management. As the number of funds rises over time, the competition

resembles Schumpeter’s “creative destruction” and forces to exit the managers who underperform

with respect to the benchmark. The aggregate demand and investor surplus from alpha surge, be-

cause the competition increases the expected abnormal returns and decreases the fund fees. As a

result, the fund class operates under increasing returns to aggregate scale during its early growth

stage.

As the fund class matures, the escalating competition diminishes the opportunities for alpha at

the aggregate level. Although the incumbent managers are on average more talented over time,

they also become more homogeneous in their strategies. An increasing number of funds crowd

into a diminishing opportunity set over time. The managers invest in the same direction altogether,

and the increasing trading costs result in more elusive alphas. Eventually, the returns to aggregate

scale reverse from increasing to decreasing, and the total surplus from active investing declines.

The managers gradually index larger portions of their assets as their fund size grows and their alpha
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depletes. Throughout its life cycle, a fund class transforms from a risky investment vehicle that

is rich in opportunities for alpha to a set of funds whose performance and risk are similar to the

class benchmark. This is the concept of “today’s alpha is tomorrow’s beta”.1 It implies that the

opportunities for alpha at the aggregate level and active trading wane, as the entry of more talented

managers over time increases the level of sophistication for the class benchmark.

The main feature in Berk and Green (2004) is diminishing returns to scale at the fund level. The

underlying mechanism in my setup is based on class-wide variables such as the number of funds,

aggregate size, and the cross-sectional variance in talent as a proxy for the remaining profitable

opportunities. My model predicts that every fund class operates initially with increasing returns,

followed by decreasing returns to aggregate scale as it matures over time. As a result, the com-

petition among managers provides a potential explanation for the diminishing returns to aggregate

scale that is observed in equity mutual funds (Pástor et al., 2015). Further empirical work on other

fund classes such as fixed income or alternative investments could test this model for increasing

returns to scale. In addition, the model predicts that the fees and returns of mutual funds during

their early growth should be larger than what we observe today, while the fees and returns in asset

classes such as hedge funds will decrease in the future.

The flow-performance relation is monotonically increasing, implying larger allocations to the

most talented managers. This relation is concave during the early stages of the life cycle, when

the fund class is abundant in profitable opportunities. Concave flows imply that investors are more

sensitive to bad performance and less sensitive to good performance. The insensitivity of capital

reallocation among talented managers follows from the investor’s preference for variety, aiming to

exploit a broader set of opportunities for alpha and diversify his risk. The least talented managers

underperform the benchmark by a wide margin when the dispersion of talent is large, triggering

thus large capital outflows from them.

During the late stages of the life cycle, the curvature of the flow-performance relation reverses to

convex. Convexity indicates that flows are more sensitive to good performance and less sensitive to

1This is a popular expression among market practitioners that was coined by Andrew Lo. See also Cho (2017) for

a costly arbitrage-based argument where alphas turn to betas.
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bad performance. The returns of most managers are little different than the benchmark return when

the opportunities for alpha are scarce across the fund class. This implies less sensitive outflows

for those who underperform the benchmark, because their losses are relatively small. However,

the reward for managers who yield positive alpha is disproportionately large, because it is more

strenuous to yield positive alpha when all managers are similar in talent.

Following Ippolito (1992) and Sirri and Tufano (1998), an extensive empirical literature shows

a convex flow-performance relation for equity mutual funds. My model implies that the convexity

of investor flows is related to a scarcity in profitable investment opportunities within this fund

class. On the other hand, Goldstein et al. (2017), Kaplan and Schoar (2005), and Getmansky (2012)

show concave flows for investors in corporate bond mutual funds, private equity, and hedge funds

respectively. My model implies that these fund classes should also operate under increasing returns

to aggregate scale, both effects related to a substantial availability of opportunities for alpha.

I discuss the life cycle of investment management from an industrial organization point of view,

and with symmetric information across the market. Garleanu and Pedersen (2016) model the com-

petition among managers based on information inefficiency. The diminishing returns to aggregate

scale in their model arise because the market becomes more efficient as the fund class grows in

size. The poor abnormal returns within large classes such as mutual funds stem from a relatively

large number of noise allocators, who invest mostly in uninformed managers. As a result, their

contract is not first-best. The investors in my model reward positive innovations in performance

with a finite elasticity of substitution, and the contract is first-best.

Garleanu and Pedersen (2016) also predict that fees decline over time, and the population of

managers reduces to a small number of large funds that dominate the class. In the asymptotic limit,

the investor search costs diminish, along with the fees and the number of funds. As a result, the

fund class dies out. Contrary to their prediction, the number of funds increases in my model and

it stabilizes to a finite value by the end of the life cycle. Mature fund classes are still valuable to

investors, because they offer a low-cost diversification over investment strategies that are particular

to that class.

4



II. The model

The model describes the competition among managers within a single class of funds. I assume

that there is no managerial mobility across different fund classes. The manager’s only alternative

to active investing within the class is indexing his assets under management. The model is neo-

classical and there is no moral hazard or adverse selection. The markets make rational expectations

and investors allocate resources efficiently. As a result, the implied contract among investors and

managers is first-best.

A. Individual fund and class-wide features

A fund class in this paper consists of all funds whose returns are subject to the same set of risk

factors, and it may involve multiple investing styles. For instance, the class of equity mutual funds

includes growth, income, and blend styles. The risk factors define a unique relation between a

fund’s returns and systematic risk within the class. This relation provides a class-wide benchmark

to compare with each fund. The managers are compensated for their abnormal returns, namely their

returns from active investing that are in excess of the class benchmark. The term “alpha” refers to

the abnormal returns of a fund.

Each potential entrant to the fund class is endowed with an exogenous talent in active investing

τi whose value cannot be modified after entry. The distribution of talent for the potential entrants is

H(τi), and it is common for all entry cohorts. A manager’s talent reflects his ability in exploiting

profitable opportunities and yielding abnormal returns that do not stem from luck. The level of

talent is unobservable and imperfectly known to the market, including the manager himself. All

market participants observe the realized fund returns over time, and update their estimates about

every manager’s talent. I assume that the uncertainty about a manager’s talent is resolved within

one period after entry, implying that a single innovation is sufficient for the market to estimate the

true value of his talent.

The class benchmark is itself a value of talent τ
B

(t) that provides a standard of comparison
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among the incumbent managers. Some incumbents outperform and others underperform with re-

spect to the benchmark. In principle, the benchmark talent could have any value within the dis-

tribution of talent among the incumbent managers. I specify this value to be the cross-sectional

weighted average of talent estimates. Thus, I define the benchmark τ
B

(t) as

τ
B

(t) ≡


1

Nt

Nt∑
i=1

qitτ̂it for t > 0

0 for t = 0
(1)

whereNt is the number of incumbent managers only, and it does not include those who have exited

at time t or before, while qit is the size of fund i at time t. The term τ̂it is the market’s estimate

for the talent of manager i conditional on information until time t. Since the uncertainty about

managerial talent is resolved within a period, the estimate is equal to the true value of talent for

managers who were incumbents before time t. However, τ̂it for managers who enter the fund class

at time t is an estimate from the distribution H(τi).

The gross abnormal return for fund i that is realized at time t + 1 is

Rit+1 = 1 + τi − τ
B

(t) + εit+1 , i = 1, . . . , Nt , t > 0 (2)

As a result, the market uses the innovations at t+1 to update each manager’s talent level individu-

ally, while comparing those estimates with the benchmark at time t. The term τi −τ
B

(t) expresses

the manager’s alpha, and it can be positive or negative. The noise terms εit+1 are jointly distributed

over time and across managers with zero mean. These shocks express the component of luck in the

realized return Rit+1.

I define a proxy for the remaining profitable opportunities within the fund class. The proxy is

the market estimate of the cross-sectional variance in talent within the fund class, conditional on
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information until time t

σ̂τ (t) ≡ 1
Nt − 1

Nt∑
i=1

(τ̂it − τ
B

(t))2 (3)

Since the uncertainty about talent is resolved during a period, σ̂τ (t) is equal to the true variance

of talent in the population of incumbent managers if there is no entry and exit of funds. The cross-

sectional variance σ̂τ (t) is a key variable to my model, because it provides a measure for the

remaining profitable opportunities through active investing within the fund class. When σ̂τ (t)

is large, the heterogeneity in talent across the incumbent managers implies a strong potential for

abnormal returns by those on the right tail of the talent distribution, but also the potential for large

realized losses by managers on the left tail of the distribution.

On the other hand, a large number of managers with a small variation in talent is related to a

shortage of opportunities. When the active strategies of the incumbents span the full opportunity

set for the fund class, then the managers are forced to crowd into similar strategies. As more

funds chase the same opportunities, the rising trading costs make these opportunities more elusive.

Even for the case where every manager is very talented in identifying profitable opportunities, the

resulting alphas are small because all rival managers trade in the same direction. As a result, the

combination of large number of funds Nt and small talent dispersion σ̂τ (t) implies a scarcity of

profitable trades.

B. The investor’s problem

The investors in Berk and Green (2004) supply flows to a single manager with perfect elasticity,

based on innovations over time about the manager’s talent. They reward positive abnormal returns

from active investing with fund inflows, and punish negative abnormal returns with outflows. In

my model, the fund class at time t includes Nt managers with varying levels of talent in active

investing τi, where i = 1, . . . , Nt. Similarly to Berk and Green, the supply of flows to each

manager is based on performance.
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The investor has mean-variance preferences for the allocations of capital within his portfolio

of funds. His utility is quadratic, implying that the funds are imperfect substitutes. The finite

elasticity of substitution betweenmanagers expresses the investor’s tradeoff between superior talent

and diversification. His goal is to exploit the profitable opportunities at the aggregate level. For

this purpose, he employs the most talented managers. However, he also diversifies his wealth

across multiple funds to mitigate his risk and benefit from labor pooling effects, because different

managers exploit in principle different profitable opportunities.

The portfolio of funds at time t involves Nt active managers and one passive index. I introduce

the passive fund to have the aggregate size of actively invested assets as an endogenous variable in

the model. The investor’s problem during a single period is the following:

max
qt

U = Et[q′
t(rt+1 − ft)] − a

2 q′
tVtqt s.t. q′

t1 6 Wt (4)

where a is a parameter related to the investor’s risk aversion and elasticity of substitution, and Wt

is the exogenous total wealth invested among the active funds and the passive index at time t. All

vectors have Nt + 1 elements, where qt, ft, and rt+1 are the vectors for fund sizes, fees, and

nominal returns realized at t+1. In addition, 1 is a vector of ones, andVt is the (Nt+1)×(Nt+1)

covariance matrix for the returns of the passive index and the incumbent active managers within

the fund class. The fund fee represents the price that the investor pays for active management.2

Lemma 1 shows the solution to the investor’s problem.

LEMMA 1. The equilibrium size for fund i at time t is given by

q∗
it = b0

Nt + 1 + b1Et[Rit+1 − fit] − b2
Nt + 1

Nt∑
j=0

Et[Rjt+1 − fjt] (5)

where b0 is a scalar that encapsulates the investor’s total wealthWt, b2 < b1, andEt[Rjt+1−fjt]

is the expected net-of-fee alpha for fund j.

2I do not make a distinction between management and performance fees.
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The equilibrium demand for a fund i includes the net-of-fee alpha that the investor receives

from that fund.3 This is similar to the equilibrium solution in Berk and Green (2004). The single

manager in their setup can act as a discriminating monopolist and raise his fee until he absorbs all

surplus from investment. The new feature in this model is the dependence of the investor demand

on rival net-of-fee alphas within the fund class. Equation (5) shows that any arbitrary attempt

from a manager to raise his own fees may trigger outflows that are redistributed to rival funds.

This equation also shows that the size of any individual fund is affected by the total number Nt

of incumbent managers. This variable is a proxy for the intensity of the competition among the

managers within a fund class.

C. The competition among managers

The managers within a fund class compete for investor capital and profitable investment op-

portunities. The manager of fund i sets his fee fit at time t, and the investors determine the fund

size qit through flows that satisfy their demand in equation (5). The number of incumbents Nt is

a measure of the competition’s intensity among the managers, and the cross-sectional variance of

talent is a proxy for the remaining profitable opportunities within the fund class. These are the un-

derlying variables that determine the equilibrium fees and fund sizes. The abnormal returns Rit+1

reflect a manager’s talent in active investing. A manager’s talent helps in generating returns that

can potentially outperform the benchmark, but he has no control or influence over the performance

of rival funds and the benchmark returns.

The cost of active investing has two components. The first stems from bid-ask spreads that every

manager pays to implement his strategies. This cost is related to the fund’s own size, but it is also

affected by the availability of profitable opportunities. The second component is an opportunity

cost to the manager for maintaining a particular strategy. The total cost function for active investing

3The gross alpha for the index fund is zero by definition, implying that Et[R0t+1] ≡ 0 always.
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is

C(qit, σ̂τ (t)) = cq2
it

σ̂τ (t) + hqit (6)

where c and h are constants. The quadratic term captures the diminishing returns to scale at the

fund level. The cross-sectional variance of talent describes the scarcity of opportunities for abnor-

mal returns at the aggregate level. When σ̂τ (t) is large, the fund class is abundant in investment

opportunities and the trading costs for every manager are relatively low. On the other hand, a small

σ̂τ (t) implies that the profitable opportunities are scarce, and that managers must trade in the same

direction. As a result, the trading costs rise for all managers and impede them from outperforming

the class benchmark.

The linear term hqit in equation (6) expresses an additional opportunity cost. This is the cost

that the manager incurs when he forgoes investment opportunities from restrictions on his portfolio,

imposed either by investors or the manager himself.4 As a result, the managers are differentiated

both by talent level and the opportunities for alpha that they chase. The total cost of active investing

is unobservable to the investor. It affects the manager’s profits from fees, and it also affects the

investor’s surplus indirectly by decreasing the total value added to the initial investment.

The fund’s revenue is based on fees, and it is a fraction of the value that the manager generates

for the investor. Each manager i chooses his fee at time t to maximize his expected profits from

active investing. The manager’s problem is

max
fit

Et[Πit+1] = fitqitEt[Rit+1] − cq2
it

σ̂τ (t) − hqit (7)

where qit is the investor demand in equation (5) and it clears the market. The Nash equilibrium for

4For instance, it is quite common for institutional investors to allocate capital to managers under the condition that

they do not trade certain securities.
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equations (5) and (7) yields the fund’s response function

f∗
it =

2b0b1c + (Nt + 1)b1hσ̂τ (t) − 2b1b2c
Nt∑
j=0

Et

[
Rjt+1 − f∗

jt

]
+

Et[Rit+1]
2b2

1c(Nt + 1) + b0σ̂τ (t) + b1(Nt + 1)σ̂τ (t) −

b2σ̂τ (t)
Nt∑
j=0

Et

[
Rjt+1 − f∗

jt

]  ·
[
2b1(Nt + 1)

(
b1c + Et[Rit+1]σ̂τ (t)

)]−1
(8)

given the approximation ∂qit/∂fit = −b1 + b2/(Nt + 1) ≈ −b1, and also R2
it+1 ≈ Rit+1 in

equation (8). The fund’s response function depends on the sum of expected returns and the sum of

equilibrium fees for all incumbent managers. Adding up equations (8) for all funds allows to solve

for the sum of fees, and then retrieve each equilibrium fee. Substituting equation (8) in equation

(5) gives the equilibrium fund size. The equilibrium aggregate size Q∗
t is the sum of the fund sizes

for the Nt incumbent active managers.

An approximation that is useful for the comparative statics analysis hereafter, is that the sum

of returns SR ≡ ∑
j Et[Rjt+1] is not affected by perturbations to the expected return of a single

fund. This implies that any innovations about amanager’s talent cannot affect the average estimated

talent for the fund class. The following Lemma discusses the monotonicity of the relation between

fund flows and performance, and the comparative statics for the number of incumbent funds Nt.

LEMMA2. An increasing number of managers is detrimental to fund fees and size, but it correlates

positively with the aggregate investor demand. The flow-performance relation for each fund is

monotonically increasing, but it declines to zero as the profitable opportunities within the fund

class diminish. Specifically,

∂f∗
it

∂Nt
< 0 ,

∂q∗
it

∂Nt
< 0 ,

∂Q∗
t

∂Nt
> 0 , and

∂q∗
it

∂Et[Rit+1] > 0 ∀i, t (9)

The competition among managers affects adversely the funds and benefits the investors. The
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investor has preference for variety in active management, and diversifies his capital across multiple

managers to exploit the profitable opportunities within the fund class. As a result, the aggregate size

increases when new managers enter the fund class, while the assets and fees of each fund decline.

The distribution of surplus among investors and managers depends on the availability of prof-

itable opportunities within the fund class. I assume that fees are not reinvested in the next period,

making them a dead-weight cost. As a result, the total investment surplus from a single fund i at

time t after fees and trading costs is equal to

TSit = q∗
it (Et[Rit+1] − f∗

it) − c (q∗
it)

2

σ̂τ (t) − hq∗
it (10)

The manager surplus is the fund profit from fees, and the investor surplus is what remains from the

total surplus after the manager extracts his surplus through fees.

The manager may extract a larger portion of the total surplus if he invests a fraction of his assets

under management into a passive index. This is termed “closet indexing”, because the investor

cannot monitor whether all capital is actively traded or not. Since indexing is unobservable, I

assume that the investor’s demand is the same as in equation (5), and the equilibrium fees are still

determined by equation (7). This implies that indexing does not affect the population of incumbent

managers and the allocation of capital. The manager trades actively xitqit of his assets under

management, and invests the rest of his capital (1 − xit)qit in passive strategies. The optimal

fraction x∗
it < 1 is found by maximizing the following objective:

max
xit

f∗
itq

∗
it(xitEt[Rit+1] + 1 − xit) − c (xitq

∗
it)

2

σ̂τ (t) − hq∗
it

 (11)

Equation (11) implies that passively invested capital does not earn abnormal returns. The asterisks

denote equilibrium values for capital and fees that are determined by equations (5) and (7).

LEMMA 3. Each manager i may choose to trade actively at time t only a fraction of his assets
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under management

x∗
it = f∗

it(Et[Rit+1] − 1)σ̂τ (t)
2cq∗

it

=
f∗

it(τi − τ
B

(t))σ̂τ (t)
2cq∗

it

(12)

to appropriate some of the investment surplus without affecting the population of rival managers,

fund fees, and the investor’s demand.

Lemma 3 shows that the managers with the largest alphas τi − τ
B

(t) are more active, and

tend to increase their fraction in active management when fees are large. However, the managers

tend to become more passive as their total fund size increases, or when the profitable opportunities

diminish through a declining cross-sectional variance of talent.

III. The life cycle of investment management

The model in Section II describes a snapshot of the competition among managers. In this sec-

tion, I discuss the time-series effects of this competition. Potential entrant managers will enter the

fund class if their expected profits are positive, while incumbents with negative expected profits

will exit. In equilibrium, the marginal entrant at time t is the manager who has zero expected

profits. As a result, the number of incumbent managers Nt at time t is specified by

Et[Πkt+1] = f∗
ktq

∗
ktEt[Rkt+1] − c (q∗

kt)
2

σ̂τ (t) − hq∗
kt = 0 (13)

where k is the marginal entrant fund, and the asterisks denote equilibrium values that are specified

by the solution to equations (4) and (7). The solution of equation (13) yields the number of in-

cumbents Nt

(
σ̂τ (t)

)
as a function of the cross-sectional dispersion of talent within the fund class.

Unfortunately, this equation has no closed-form solution. Alternatively, I model an exogenous

entry of managers.

The fundamental assumption about entry during the life cycle of the fund class is that the com-

petition among managers intensifies over time. Historical data on the mutual fund industry seem
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to support this assumption. Figure 1 illustrates a growth in the number of funds and aggregate

demand, especially during the 1990s. The number of funds seems to reach a plateau after the dot-

com crisis, while the aggregate demand has maintained its ascending track. I make the following

assumption about fund entry over time.

Entry assumption: The rate of net entry is positive and proportional to the aggregate

profits of the incumbent managers. Specifically,

dNt

dt
∝ Et

 Nt∑
j=1

Πjt+1

 > 0 , ∀t > 0 (14)

The expected profits for funds at any time are affected by the availability of profitable invest-

ment opportunities. The assumption above guarantees a positive net entry throughout the life cycle.

However, the net entry is lessened over time as the opportunities within the fund class diminish from

competition. Entry ceases at the end of the life cycle, when all opportunities are depleted and the

cross-sectional dispersion of talent declines to zero, implying zero profits from active investing for

all incumbent managers.

Figure 1: Time series of the total number of mutual funds in US (left), and total net assets in US

trillions (right). Data are from the Investment Company Institute.
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A. Investor flows and managerial competition

The investor has mean-variance preferences and chooses to diversify his wealth across multi-

ple funds. The matching between capital and managerial talent is assortative, implying that more

talented managers administer larger portions of assets. The investors learn about managerial talent

through a stochastic process that utilizes the innovations from realized returns. The uncertainty

about an incumbent’s talent is resolved within a single period in this model. Lemma 2 shows a

monotonically increasing relation between investor flows and fund performance. This implies that

the investor withdraws capital from managers who underperform with respect to the benchmark,

and reinvests it to managers who outperform the benchmark. He supplies inflows to the funds with

positive innovations in anticipation of larger returns and investment surplus in the future. The fol-

lowing Lemmas show the impact of flows on the class benchmark, and compare the flows across

different entry cohorts over time.

LEMMA 4. The performance-based flows by the investor impede managers progressively from

outperforming the class benchmark, i.e. τ
B

(t) > τ
B

(t − 1), ∀t.

LEMMA 5. Funds in earlier entry cohorts receive comparatively larger flows than funds in sub-

sequent entry cohorts. Specifically, between two managers of identical talent and realized returns

who entered at different cohorts, the manager who entered first will receive larger flows over time.

The competition among managers and the investor’s response through capital flows character-

ize the evolution of the class benchmark τ
B

(t). Managers with τi < τ
B

(t) will have negative

expected abnormal returns from time t and beyond, and they will underperform the benchmark.

These managers will experience outflows from investors until they liquidate the fund and exit. The

rising τ
B

(t) implies that many incumbents who yield positive abnormal returns at a certain time

will eventually be surpassed by younger and more talented managers in the future. This feature

of the competition is intuitively similar to a “creative destruction” (Schumpeter, 1942). The less
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talented managers are forced to exit, and they are replaced by younger cohorts of more talented

managers.5

More importantly, the increasing τ
B

(t) and the exogenous prior distribution H(τi) for the

talent of potential entrants imply that the cross-sectional variance σ̂τ (t) for incumbent managers

must decrease over time. The effects of managerial turnover during the life cycle of the fund class

are summarized below.

PROPOSITION 1. The competition among managers decreases their fees and increases the aver-

age talent over time. However, it depletes the opportunities for alpha within the class by decreasing

the cross-sectional variance in talent, i.e.

dσ̂τ (t)
dt

< 0 (15)

Proposition 1 has significant implications to the evolution of the life cycle. The sensitivity of

fund fees to performance depends on the dispersion of talent. For every fund i at time t, the limiting

values for the relation between fees and performance are

lim
σ̂τ (t)→∞

∂f∗
it

∂Et[Rit+1] = −

[
2(Nt + 1)b1 − Ntb2

]
h

2(Nt + 1)(2b1 − b2)Et[Rit+1]2 < 0 (16)

lim
σ̂τ (t)→0

∂f∗
it

∂Et[Rit+1] = (Nt + 1)b1 − Ntb2
(Nt + 1)(b1 − b2) > 0 (17)

When the fund class is bountiful in profitable opportunities, the managers decrease their fees in

expectation of good performance in the future. This novel result implies that the competition among

managers provides a means to counteracting increases in fund fees, by augmenting investor flows

to rival funds. The investors have preferences for variety, and diversify their wealth across multiple

funds with allocations proportional to managerial talent. If a manager attempts to increase his fees

in expectation of a positive innovation, then the investors can react by redirecting their flows to

5Pástor et al. (2015) show empirically a rising talent over time in equity mutual funds (see Figure 2 in their paper).

They explain this trend in terms of changes to the population of managers.
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rival managers of similar talent. On the contrary, the manager decreases his fee to boost his future

capital inflows.

Proposition 1 suggests that the remaining profitable opportunities become gradually more elu-

sive, as it becomes more strenuous to outperform the class benchmark over time. Below a certain

level of σ̂τ (t), it is impractical for the investor to diversify capital over similarly talented managers

with low alphas, and managers who can still yield large abnormal returns are more valuable. This

situation is similar to the setup of Berk and Green (2004), where the manager can increase his fee

in expectation of good performance. The following Lemma shows that the threshold level of talent

dispersion where the manager can increase his fee is unique, and its value depends on the level of

intensity for the competition among his peers.

LEMMA 6. There exists a unique positive root σthr that is common to the following equations

∂f∗
it

∂Et[Rit+1] = 0 ,
∂Q∗

t

∂Et[Rit+1] = 0 , and ∂2q∗
it

∂Et[Rit+1]2 = 0 (18)

and its value is increasing in the number of incumbent managers Nt.

σthr(Nt) = b1c

(Nt + 1)b1 − b0 + b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
+

4h(Nt + 1)2(2b1 − b2)(b1 − b2) +
b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
+

b1(Nt + 1) − b0

21/2 ·
[
h(Nt + 1)(2b1 − b2)

]−1
(19)

Lemma 6 suggests that the life cycle of a fund class may be separated in two stages, depend-

ing on the availability of profitable investment opportunities. The evolution of the life cycle has

consequences for the economies of aggregate scale, the curvature of the flow-performance rela-

tion, and the distribution of investment surplus among the managers and investors. I discuss these

consequences below for each stage of the life cycle.
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B. The early stages of the life cycle

Incipient fund classes have few managers and little aggregate capital. The threshold variance

σthr in equation (19) is nearly zero. The fund class is abundant in profitable opportunities, as

implied by σ̂τ (t) > σthr. The managers compete for superior performance and investor flows.

The fees are negatively correlated with expected performance, because themanagers try tomaintain

their share of investor flows while new funds enter. The number of funds grows over time and the

competition reduces σ̂τ (t) as opportunities are exploited. The aggregate capital within the fund

class increases over time too, as the following Lemma shows.

LEMMA 7. The equilibrium aggregate demand Q∗
t increases during the early stages of the life

cycle, i.e. Q∗
t+1 > Q∗

t .

The equilibrium demand for a single fund is heterogeneous in the manager’s own performance,

but homogeneous in the cross-sectional dispersion of talent. This feature along with preferences

for variety introduce a positive network externality among investors. An investor that diversifies

his capital across multiple funds induces the managers to decrease their fees. The capital allocation

by a single investor benefits the other investors too, because it decreases their fee costs. As a result,

the concurrent growth in the number of funds and aggregate demand is advantageous to investors.

This is a network externality similar to Katz and Shapiro (1985), where “consumers are assumed

to be heterogeneous in their basic willingness to pay for the product, but homogeneous in their

valuation of the network externality”.

The network externality, also known as demand-side economies of scale, and the competition

amongmanagers trigger an increase in expected fund performance. The declining fees (Proposition

1) are associated with larger expected returns (see equation 16). Since the aggregate demand and

expected fund performance correlate positively, the fund class operates under increasing returns to

aggregate scale during the early stage of its life cycle. Figure 2 shows that the correlation between

aggregate demand and expected fund returns is positive for σ̂τ (t) > σthr.

The flow-performance relation for nascent fund classes is concave. Figure 2 shows that the
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Figure 2: Comparative statics of fees on performance (red solid line), returns to aggregate scale

(green dashed line), and flow-performance relation (blue dot-dashed line) as functions of the cross-

sectional dispersion of managerial talent. The vertical dashed line marks the threshold variance

σthr where the returns to aggregate scale reverse from increasing to decreasing, and the curvature

of the flow-performance relation switches from concave to convex. The graph also shows limiting

values for all curves when σ̂τ (t) → 0 and σ̂τ (t) → ∞. These are

(A)
∂f∗

it

∂Et[Rit+1] = (Nt + 1)b1 − Ntb2
(Nt + 1)(b1 − b2)

(B)
∂f∗

it

∂Et[Rit+1] = − (2(Nt + 1)b1 − Ntb2)h
2(Nt + 1)(2b1 − b2)Et[Rit+1]2

(C)
∂Q∗

t

∂Et[Rit+1] = b1((Nt + 1)b1 − Ntb2)h
(Nt + 1)(2b1 − b2)Et[Rit+1]2

(D)
∂Q∗

t

∂Et[Rit+1] = −b1((Nt + 1)b1 − Ntb2)
(Nt + 1)(b1 − b2)

(E)
∂2q∗

it

∂Et[Rit+1]2 = −b1(2(Nt + 1)b1 − (Nt + 2)b2)h
2(Nt + 1)(2b1 − b2)Et[Rit+1]3
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second derivative of fund size with expected returns is negative. Concavity implies that investor

flows are more sensitive to bad performance, and less sensitive to good performance. The con-

cavity is related to a large dispersion of talent within the fund class. The investor faces a tradeoff

between seeking the most talented managers and diversifying his wealth to exploit potentially new

investment opportunities. When there are plenty of these opportunities available (large σ̂τ (t)), the

investor favors diversification across multiple funds. Investors who are the earliest in allocating

capital to young funds are those who supply the largest flows over time (see Lemma 5) and benefit

the most from future performance, until the uncertainty about each manager’s talent is resolved.

As a result, the relatively small sensitivity to good performance stems from the investor’s attempt

to claim promptly a broad set of profitable opportunities. On the other hand, a large dispersion of

talent implies the possibility for large realized losses too. Managers who underperform the bench-

mark during this stage of the life cycle are very harmful to the investor’s portfolio. As a result, the

investor flows are most sensitive to bad performance.

The talent dispersion also affects the distribution of total surplus among investors andmanagers.

The total surplus from a single fund is given by equation (10), and it plateaus to a nearly constant

value for large talent dispersion. The manager can extract a part of the surplus that he generates if

he indexes a fraction of his assets under management (Lemma 3). During the early stages of the life

cycle, the manager surplus is approximately linear in talent dispersion. The manager surplus may

be either larger or smaller than the investor surplus at the onset of the life cycle, depending on the

values of the model parameters. However, as the profitable opportunities are exploited over time

and σ̂τ (t) decreases, the investor surplus increases and eventually dominates the manager surplus.

PROPOSITION 2. The returns to aggregate scale are increasing during the early stages of the life

cycle, stemming from demand-side economies of scale and the competition among managers. The

flow-performance relation is concave. The total surplus from investment of a single fund is positive

and split between the investor and the manager, with the investor enjoying the larger portion.
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C. The late stages of the life cycle

Despite the improvement in average talent within the class over time, the decreasing σ̂τ (t)

prognosticates the eventual depletion of the opportunities for abnormal returns. The scarcity of

profitable opportunities gradually attenuates the benefit of the network externality by raising the

cost of active investing (see equation (6)). As the competition intensifies, an increasing number of

managers chase a diminishing set of investment opportunities at higher cost. When the dispersion

of talent reduces below the critical level where σ̂τ (t) 6 σthr, the life cycle of the fund class

transitions to its late stages. Managers who outperform the benchmark by a wide margin are rare,

because of the low dispersion of talent.

The correlation between fund fees and performance changes to positive (ceteris paribus), im-

plying that the effect of the network externality deteriorates. Since the fund fees decrease over

time (Proposition 1), the expected returns decline. However, the aggregate demand may increase

or decrease during the late stages of the life cycle. Following the deterioration of the network ex-

ternality and the low prospects for future abnormal returns (low σ̂τ (t)), the returns to aggregate

scale reverse from increasing to decreasing. The transition is rooted in the rise of trading costs for

all incumbents through the reduction of profitable opportunities within the fund class. Figure 2

shows that the correlation between the aggregate demand and expected fund returns is negative for

σ̂τ (t) < σthr values of talent dispersion.

The flow-performance relation during the late stages of the life cycle is convex. Figure 2 shows

that the second derivative of fund size with expected returns is positive for σ̂τ (t) < σthr, and σthr

is the inflection point for the flow-performance curve. Convexity implies that investor flows are

more sensitive to good performance, and less sensitive to bad performance, and it is related to

the dispersion of talent. The managers crowd around the few remaining profitable opportunities

within the fund class when σ̂τ (t) is small. They must trade in the same direction to exploit these

opportunities, raising thus the cost of active trading and making the opportunities more elusive.

As a result, it becomes more strenuous to outperform the benchmark. The convexity of the flow-
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performance relation implies that the investors value significantly those managers who still yield

positive alpha within this environment.6 In addition, the investor outflows from managers who

underperform with respect to the benchmark are moderate, because all incumbents are alike in

talent and realized loses are smaller compared to earlier stages of the life cycle.

The diminishing dispersion of talent during the late stages of the life cycle is critical to the

investment surplus and aggregate risk within the fund class. Figure 3 shows the decline of total

investment surplus when the cross-sectional dispersion of talent is small. The deterioration of the

network externality allows the managers to increase their fees in expectation of good performance.

Depending on the values for the model parameters, the manager can potentially capture a larger

portion of the total surplus against the investor. However, the total surplus deteriorates to zero

along with the dispersion of talent. This implies that active investing becomes less valuable to both

investors and managers when there are not many profitable opportunities within the class.

On the other hand, every manager indexes the majority of his assets when σ̂τ (t) is very small

(Lemma 3). Indexing is less risky than active investing, suggesting that the aggregate risk within the

fund class is reduced during the late stages of the life cycle. The number of funds is still increasing,

until all the opportunities for alpha are depleted and every incumbent fully indexes his assets. At

that time, all entries cease and the number of funds Nt plateaus, because the potential entrants are

indifferent between indexing and not entering. Throughout its life cycle, the fund class transforms

from an investment vehicle that yields surplus from active trading to a large pool of capital where

risk and performance are similar to indexing at the margin. This is the intuition of “today’s alpha”

becoming inevitably “tomorrow’s beta”, as the profitable investment opportunities within the fund

class are competed away.

PROPOSITION 3 (Today’s alpha is tomorrow’s beta). During the late stages of the life cycle, the

returns to aggregate scale reverse from increasing to decreasing and the flow-performance relation

is convex. The total surplus from active investing declines asymptotically to zero. The aggregate

risk is smaller than earlier stages of the life cycle, because managers index larger portions of their

6Berk and Green (2004) also derive a convex flow-performance relation when managerial talent is scarce.
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assets under management.

Figure 3: Investment surplus as a function of the cross-sectional dispersion of talent. The parameter

values are c = 0.01, h = 0.1, q0 = 1, Nt = 3, and b0 = 1.5 for both plot. The manager surplus

exceeds the investor surplus as σ̂τ (t) → 0 for a = 0.35 in the left plot (b1 = 2.857, b2 = 1.43),
but it is always smaller for a = 0.15 in the right plot (b1 = 6.667, b2 = 3.333).

D. The life cycle and aggregate liquidity

The model shows how the availability of profitable investment opportunities within the fund

class is critical to the evolution of its life cycle. A potential interpretation of the dynamics discussed

above is based on aggregate liquidity. The term liquidity describes broadly the ability to trade a

specific asset at low spreads and without affecting adversely the asset’s price. Berk and Green

(2004) assume diminishing returns to scale through a convex cost function for active management.

The single manager in their setup is liquidity-constrained, because he expends resources to pay

for bid-ask spreads that rise dramatically with his fund size and affect his returns. The managers

in this model still have to pay for bid-ask spreads, but the scarce resource is the set of profitable

opportunities that are available within a fund class.7

Within nascent fund classes there are plenty of opportunities for alpha, and the managers can

exploit them at relatively low cost. By creating a market for active investing they supply liquidity

7Glode and Green (2011) use a similar concept to explain the persistence in performance for hedge funds.
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to investors. The investor diversifies his wealth across multiple funds to mitigate risk, but also

benefits from the network effect that arises from the diversification over multiple active trading

strategies. The cost of this liquidity is an indirect reduction to each fund’s net-of-fee alpha through

themanager’s opportunity cost of following a particular strategy (see equation (6)). As a result, hQt

is the total liquidity premium that the investor pays for the network effect at time t. This premium

determines the magnitude for the economies of scale at the aggregate level, as the asymptotic limit

for ∂Qt/∂Et[Rit+1] in Figure 2 shows.

However, the liquidity at the aggregate level gradually diminishes as the profitable opportunities

are exploited over time. Eventually, a large number of managers compete with each other and trade

in the same direction to capture the few remaining opportunities. This increases the trading cost

and affects the returns of all managers simultaneously. Therefore, the availability of profitable

opportunities within the fund class is inherently connected to aggregate liquidity. The managers

are liquidity-constrained at the aggregate level, rather than the fund level.

IV. Empirical implications of the model

Recent empirical evidence by Pástor et al. (2015) show that diminishing returns to aggregate

scale for equity mutual funds dominate the returns to scale at the fund level. My model provides a

potential theoretical explanation for the origin of the diminishing returns to aggregate scale, which

is the depletion of the opportunities for alpha within the fund class (Propositions 1 and 3). The

equilibrium solution involves efficient allocations, and all outcomes are first-best. Garleanu and

Pedersen (2016) provide an alternative explanation for diseconomies of scale, based on the compe-

tition among managers and informational inefficiency in investment management. Consequently,

the competition among managers is the key extension to Berk and Green (2004) that accounts for

the existence of diminishing returns to aggregate scale. In addition, Proposition 2 suggests that the

equity mutual fund industry must have operated under increasing returns to scale during the early

growth phase of its life cycle. The same result should be true for other fund classes, such as bond
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mutual funds, hedge funds, and other alternative investment asset classes.

Proposition 3 demonstrates the challenges in measuring alpha and investment surplus within

mature classes like mutual funds. The empirical literature shows insignificant net abnormal re-

turns and low gross abnormal returns on average. These results have been interpreted through

rent-seeking managers that successfully absorb all surplus from investment (e.g. Berk and Green

(2004)). I argue that mature classes like mutual funds have little alpha to offer, which makes it hard

to estimate. This is consistent with the empirical results of Fama and French (2010), who show

that most equity mutual funds yield zero alpha and managers at the tails have small positive and

negative alphas.

My model shows that managerial performance is not persistent at the fund and aggregate levels.

Diseconomies of scale at the fund level and investor flows after positive innovations undermine the

future performance of a specific manager. This is also the result of Berk and Green (2004). At the

aggregate level, the model reveals a non-monotonic evolution over time for the average fund return.

It increases initially, but eventually it declines. Depending on the choice of sample period, average

performance may seem persistent due to the effect of the network externality. However, the model

predicts that performance must eventually erode, along with the profitable investment opportunities

at the aggregate level.

The model predicts that the aggregate size of equity mutual funds will continue to grow in the

long run even with poor abnormal returns, as they have evolved into a relatively safe investment

vehicle that canmanage large pools of capital at low cost. This result is similar to Glode (2011), who

justifies the negative expected performance as an insurance premium that investors pay to protect

themselves against bad states of the economy. It is also in agreement with Pástor and Stambaugh

(2012), who assume that investor preferences account for diminishing returns to aggregate scale to

explain the demand increase with mediocre performance. The small aggregate risk in my model for

mature fund classes stems from a large fraction of indexed assets. This is consistent with Cremers

and Petajisto (2009), who show an increase by 30% for the fraction of closet indexers among equity

mutual fund managers since 1980.
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The competition among managers and the availability of profitable opportunities relate the re-

turns to aggregate scale with the curvature of the flow-performance relation. Fund classes with

limited investment opportunities should have decreasing returns to aggregate scale and convex

flows. Equity mutual funds are an asset class that fits this description. The literature on the con-

vexity of flows within mutual funds is extensive.8 In addition, Christoffersen (2001) documents

convex flows in money market funds, and Kacperczyk and Schnabl (2013) show that investor flows

are highly responsive to money market fund yields. These fund classes should have diminishing

returns to aggregate scale, and Pástor et al. (2015) verify this for equity mutual funds. However,

fund classes that have sufficient investment opportunities should have increasing returns to aggre-

gate scale and concave flows. Goldstein et al. (2017), Kaplan and Schoar (2005), and Getmansky

(2012) show concave flows among corporate bond funds, private equity, and hedge funds respec-

tively. My model predicts that these fund classes should have increasing returns to aggregate scale.

The mechanism for the life cycle of a fund class allows the creation of “mega funds”, namely

funds with significantly larger assets under management than rivals. The most successful managers

throughout the life cycle will be those who entered the fund class early with a talent level that is

deep in the right tail of the prior distribution H(τi). These managers receive the largest inflows

over time (Lemma 5), and their long tenure allows them to amass large amounts of capital. The

existence of mega funds does not affect the final number of funds for the class. This is another

indication that the depletion of alpha within the fund class is the root of the diminishing returns to

aggregate scale, rather than illiquidity of large funds combined with their own diminishing returns.

My model has different implications than Garleanu and Pedersen (2016) on the final outcome

of a fund class and the asset allocation of large investors. They predict that the informational

inefficiencies are eliminated in the asymptotic limit, and the fund class will cease to exist. My

model shows instead that a mature fund class is still valuable to investors, even in the absence of

opportunities for alpha. The number of funds is stabilized to a finite value by the end of the life

cycle. Large investors in Garleanu and Pedersen (2016) have a comparative advantage in active

8Ippolito (1992), Chevalier and Ellison (1997), Sirri and Tufano (1998), Lynch and Musto (2003), Huang et al.

(2007), and Brown and Wu (2015) among others. See also the literature survey by Christoffersen et al. (2014).
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investing, because their searching costs are a smaller fraction of their total investment compared to

smaller investors. My model suggests that large investors allocate predominantly in mature classes

to mitigate the risk of active investing.9

V. Potential extensions to the model

Mymodel aims to explain the long-term regularities for the life cycle of a fund class. I assume an

increasing level of competition, and show that the cross-sectional dispersion of talent declines over

time. Throughout the analysis, I ignore performance fees and I assume an incubation constraint for

entry. Certain fund classes like hedge funds have non-linear fee structures due to performance fees.

However, the performance fee by itself does not fully explain the fund’s performance (Agarwal

et al., 2009). The high-water mark and hurdle rates mitigate potential risk-shifting behavior from

performance fees (Goetzmann et al., 2003). In addition, indirect incentives from investor flows

are at least 1.4 times larger than direct incentives from performance fees (Lim et al., 2016). As a

result, considering only a simple fee structure in the model is not a significant restriction. However,

the inclusion of performance fees could extend the interplay between the investor and managers to

cases of moral hazard. For instance, models of decentralized investment management that consider

hierarchical structures for the institutional investors show a loss in diversification (Van Binsbergen

et al., 2008).

More importantly, the model lacks a mechanism to increase σ̂τ (t) bymeans of creating endoge-

nously new investment opportunities. A potential extension to my model could include business

cycle disturbances that may arise during the life cycle. These disturbances could be spawned ei-

ther by technological innovation or investors who create opportunities for profit by injecting large

amounts of capital to new firms in the real economy. The impact on the life cycle for a fund class

could involve an increase in the cross-sectional dispersion of talent, reflecting a surge in profitable

9For instance, large investors such as Calpers and GE pension funds report historically an asset allocation that

is roughly 88% on traditional fund classes (equity, debt, and real assets). On the other hand, smaller institutional

investors such as university endowments tend to have a more balanced asset allocation, with roughly equal fractions

of total assets among traditional and alternative fund classes according to annual reports from NACUBO.

27



opportunities. Eventually, these opportunities should decline in the long term, as active managers

exploit them over time.

Another exogenous assumption is the ever-growing population of incumbent managers. Em-

pirical trends for multiple fund classes seem to support this assumption. The only exception are

hedge funds. This class started to grow after the dot-com crisis, when institutional investors began

reallocating capital from equity mutual funds (Fung and Hsieh, 2012). However, many hedge funds

have liquidated in the aftermath of the financial crisis of 2008, and the total number of hedge funds

has been decreasing during the period 2012-2016. A potential extension to my model could derive

the number of incumbent managers endogenously and study its interplay with the availability of

investment opportunities.

VI. Conclusion

This paper discusses the life cycle of investment management. Fund managers compete for

investor flows and profitable opportunities, and may either outperform or underperform relatively

to the class benchmark. The benchmark is determined endogenously by a threshold level of talent

that is required for entry. The markets learn about managerial talent through the innovations from

the fund’s track record. The equilibrium allocations are efficient, and the implicit contract among

the investors and managers is first-best.

The driving forces for the life cycle are the competition among funds and the dispersion of

managerial talent in active investing. The evolution of the life cycle resembles the concept of

“today’s alpha is tomorrow’s beta”. Alpha is abundant during the early stages of the life cycle, but

it is eventually competed away by the managers. As a result, performance is not persistent. A fund

class that initially provides opportunities for alpha, eventually becomes a platform for relatively

safe investments of large pools of capital with returns similar to a passive index.

During the early stages of the life cycle, the competition among managers triggers a network

externality for the investors and the aggregate demand increases. The fund class grows and oper-
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ates under increasing returns to aggregate scale. The flow-performance relation is concave. The

investor surplus from alpha increases during this stage. As the competition among managers be-

comes more intense, the opportunities for abnormal returns are curtailed and the fund class reverses

to diminishing returns to scale. The flow-performance relation becomes convex, and the total sur-

plus from active investing is depleted by the end of the life cycle.

The model provides an explanation for the coexistence of diminishing returns to aggregate scale

with convex flows among equity mutual funds. It also predicts that early data on mutual funds or

other data on fund classes with plenty of profitable opportunities should exhibit increasing returns

to scale and concave flows. In addition, themodel shows that the empirical measurement of alpha in

mature classes such as equity mutual funds is challenging, because alpha is practically diminished

during the latest stages of the life cycle. This result holds irrespectively of the quality of empirical

risk factors and benchmark returns that are used to estimate alphas empirically.

Appendix

A. Derivations and proofs

The following auxiliary variables

At =
Nt∑
j=0

1
b1c + Et[Rjt+1]σ̂τ (t) (A.1)

Bt =
Nt∑
j=0

Et[Rjt+1]
b1c + Et[Rjt+1]σ̂τ (t) (A.2)

Dt = 2b1(Nt + 1) − 2b1b2cAt − b2Btσ̂τ (t) > 0 (A.3)

are used extensively in the proofs below. Equation (A.3) is positive for all values of σ̂τ (t) > 0,

since it has no positive roots and its asymptotic values are

lim
σ̂τ (t)→0

Dt = 2(Nt + 1)(b1 − b2) > 0 (A.4)
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lim
σ̂τ (t)→∞

Dt = Nt + 1 > 0 (A.5)

Another useful inequality is

b0 > b2
Nt∑
j=0

Et[Rjt+1] (A.6)

which stems from the restriction that the sum of equilibrium fees for large values of σ̂τ (t) must be

a positive number.

Proof of LEMMA 1. To simplify the notation for this proof, I omit the time subscript t from vectors.

The Lagrangian for the investor’s problem (see equation (4)) is

L = Et[q′(r − f)] − a

2 q′V q − λ(q′1 − Wt) (A.7)

where q = (q0t, q1t, . . . , qNt)′ is the fund size vector, r = (r0t+1, r1t+1, . . . , rNt+1)′ is the

fund nominal return vector, f = (f0t, f1t, . . . , fNt)′ is the fund fee vector, 1 is a (N + 1) × 1

vector of ones, and V is the (N + 1) × (N + 1) covariance matrix for the returns of the passive

index and the incumbent active managers within the fund class. The first-order condition for q′ is

Et[r − f ] − aV q = λ1 (A.8)

and the optimal fund sizes are given by

q∗ = 1
a

V −1[Et[r − f ] − λ1
]

= 1
a

[
Et[R − f ] − λV −11

]
(A.9)

with R = (0, R1t+1, . . . , RNt+1) the vector of risk-adjusted fund returns in excess of the bench-

mark, i.e. the fund gross alphas. Notice that the passive index has zero alpha by definition. Multi-
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plying equation (A.9) by 1′ allows to reconstruct the budget constraint and solve for λ

1′q∗ = 1
a

[
1′Et[R − f ] − λ

(
1′V −11

)]
= Wt ⇒ (A.10)

λ = 1′Et[r − f ]
(1′V −11) − aWt

(1′V −11) (A.11)

Substituting for λ in equation (A.9) yields the equilibrium demand function

q∗ = Wt

(1′V −11)V −11 + 1
a

Et[R − f ] − 1′Et[R − f ]
a (1′V −11) V −11 (A.12)

As a result, the demand function for fund i at time t is given by

q∗
it =

Wt

Nt∑
j=0

ωij

Nt∑
k=0

Nt∑
j>k

ωkj

+ 1
a

Et[Rit+1 − fit] −

Nt∑
j=0

ωij

a
Nt∑

k=0

Nt∑
j>k

ωkj

Nt∑
j=0

Et[Rjt+1 − fjt] (A.13)

where ωij the matrix element of V −1 at row i and column j. The following ratio has order of

magnitude

Nt∑
j=0

ωij

Nt∑
k=0

Nt∑
j>k

ωkj

= O

( 1
Nt + 1

)
(A.14)

implying that the optimal fund size may be written as

q∗
it = b0

Nt + 1 + b1Et[Rit+1 − fit] − b2
Nt + 1

Nt∑
j=0

Et[Rjt+1 − fjt] (A.15)

with b2 < b1.
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Proof of LEMMA 2. The correlations of the number of incumbents with fund fees, fund size, and

aggregate size are

∂f∗
it

∂Nt
= −b1X(2b1c + Et[Rit+1]σ̂τ (t))

D2
t (b1c + Et[Rit+1]σ̂τ (t)) < 0 (A.16)

∂q∗
it

∂Nt
= − b2

1Et[Rit+1]Xσ̂τ (t)
D2

t (b1c + Et[Rit+1]σ̂τ (t)) 6 0 (A.17)

∂Q∗
t

∂Nt
= b1X

D2
t

(
2b1 + 2b1(b1 − b2)cAt + (b1 − b2)Btσ̂τ (t)

)
> 0 (A.18)

where At, Bt, and Dt are defined in equations (A.1) to (A.3) and

X ≡ 2b0 + b2
(

− 2
Nt∑
j=0

Et[Rjt+1] + hAtσ̂τ (t) + (2b1c + σ̂τ (t))Bt

)
> 0 (A.19)

because b0 > b2
∑Nt

j=0 Et[Rjt+1] from equation (A.6). As a result, equations (A.16) and (A.17)

are negative and non-positive respectively. Equation (A.17) is equal to zero only when all the

profitable opportunities are depleted for σ̂τ (t) = 0. However, equation (A.18) is positive.

The monotonicity of the flow-performance relation is described by

∂q∗
it

∂Et[Rit+1] ∝ σ̂τ (t)
2D2

t (Nt + 1)(b1c + Et[Rit+1]σ̂τ (t))3 (A.20)

where Dt is defined in equation (A.3). This implies that investor flows decline to zero as the

investment opportunities within the fund class deplete. Equation (A.20) has no root for positive

values of σ̂τ (t), and its limit for large values of talent dispersion is

lim
σ̂τ (t)→∞

[
∂q∗

it

∂Et[Rit+1]

]
=

b1
(
2Et[Rit+1]2 + h

)
2Et[Rit+1]2 > 0 (A.21)

As a result,

∂q∗
it

∂Et[Rit+1] > 0 for σ̂τ (t) > 0 (A.22)
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which implies a monotonically increasing flow-performance relation in the presence of opportuni-

ties for alpha within the fund class.

Proof of LEMMA 3. The first-order condition from equation (11) for fund i at time t is

f∗
itq

∗
it(Et[Rit+1] − 1) − 2cxit(q∗

it)2

σ̂τ (t) = 0 (A.23)

which implies a fraction of assets under management

x∗
it = f∗

it(Et[Rit+1] − 1)σ̂τ (t)
2cq∗

it

=
f∗

it(τi − τ
B

(t))σ̂τ (t)
2cq∗

it

(A.24)

that is actively invested in equilibrium.

Proof of LEMMA 4. Lemma 2 shows that managers with larger positive alphas are assigned more

capital. The class benchmark is defined in equation (1) as the weighted average talent among the

incumbent managers, with fund assets under management as weights. Managers with negative

alphas lose capital, while managers with positive alphas gain capital. This implies that the investor

flows gradually decrease the weights in equation (1) from the left tail of the talent distribution

within the fund class. On the other hand, the flows increase the weights on the right tail of the

distribution over time. As a result, the weighted average talent shifts upward and

dτ
B

(t)
dt

> 0 (A.25)

Proof of LEMMA 5. Let t1 < t2. The variance of the prior for every manager is larger for the early

entry cohort at t1 than the subsequent cohort at t2 (Lemma 4). This implies a larger uncertainty in

the talent estimates τ̂it for the funds i in the early cohort, which translates to larger flows during
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the learning process. For instance, the flow at time t1 + 1 for a fund i in the early cohort is larger

on average than the corresponding flow at time t2 + 1 to a fund j of the later cohort, even if the

managers have identical talent and realized returns.

Proof of PROPOSITION 1. In the long run, the incumbents with talent τi < τ
B

(t) are forced to

exit by liquidation. In addition, the prior distribution for potential entrants is truncated within the

range τi ∈ [τ
B

(t), ∞). Since the lower bound increases over time (Lemma 4), the cross-sectional

dispersion σ̂τ (t) among the incumbent managers must decline, i.e.

dσ̂τ (t)
dt

< 0 (A.26)

The decrease in σ̂τ (t) implies the diminishing of the opportunities for alpha within the class. In

addition, all the incumbents have progressively similar levels of talent. The homogeneity in talent

impedes managers from outperforming the benchmark, since the difference τi − τ
B

(t) is near zero

for every fund i. As a result, the opportunities for alpha within the class become more elusive.

The evolution of fund fees for all incumbents i over time is given by

df∗
it

dt
= ∂f∗

it

∂Nt

dNt

dt
+ ∂f∗

it

∂σ̂τ (t)
dσ̂τ (t)

dt
(A.27)

The first term is negative, because Nt increases over time and ∂f∗
kt/∂Nt is negative (Lemma 2).

The second term is positive, because σ̂τ (t) declines over time from equation (A.26) and

lim
σ̂τ (t)→∞

[
∂f∗

it

∂σ̂τ (t)

]
= 0 (A.28)

lim
σ̂τ (t)→0

[
∂f∗

it

∂σ̂τ (t)

]
≈ −b0Et[Rit+1] − (Nt + 1)(b1 − b2)(Et[Rit+1] − h)

2c(Nt + 1)(b1 − b2)2 < 0 (A.29)

without a root for positive values of talent dispersion. As a result, the sign of equation (A.27)

is indeterminate in general. However, as the average profitability for a fund decreases from the
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shrinking opportunity set, the derivative ∂f∗
it/∂σ̂τ (t) becomes positive above a threshold value

for Nt. This threshold is given by

ln Nthr = 1
b1[b1Et[Rit+1] + b2(Et[Rit+1] − 1)]

(
−b1b2 − b0b1b2 − b3

1h − b2
1b2h

+ b0b2
1Et[Rit+1] − b1b2Et[Rit+1] + b0b1b2Et[Rit+1] − b2

2Et[Rit+1]

+ b2
1Et[Rit+1]2 + 2b1b2Et[Rit+1]2 + b2

2Et[Rit+1]2
)

(A.30)

Since Nt increases over time, the threshold Nthr will eventually be surpassed. As a result, both

terms in equation (A.27) will be negative, implying that the fund fees decline for all incumbents in

the course of time.

Proof of LEMMA 6. The roots of equation

∂f∗
it

∂Et[Rit+1] = 0 (A.31)

are

σthr = b1c

(Nt + 1)b1 − b0 + b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
+

4h(Nt + 1)2(2b1 − b2)(b1 − b2) +
b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
+

b1(Nt + 1) − b0

21/2 ·
[
h(Nt + 1)(2b1 − b2)

]−1
(A.32)

σ1 = b1c

(Nt + 1)b1 − b0 + b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
−

4h(Nt + 1)2(2b1 − b2)(b1 − b2) +
b2

 Nt∑
j=0

Et[Rjt+1] − (Nt + 1)
+
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b1(Nt + 1) − b0

21/2 ·
[
h(Nt + 1)(2b1 − b2)

]−1
(A.33)

σ2 = − b1c

Et[Rit+1] , ∀i (A.34)

From these roots, σthr is the only positive one. From equation (A.6) the derivative of σthr is

dσthr

dNt
∝ b1c

b0 − b2
Nt∑
j=0

Et[Rjt+1]
σthr > 0 (A.35)

implying that the threshold cross-sectional variance in talent increases with Nt. In addition,

∂Q∗
t

∂Et[Rit+1] = − 2b1((Nt + 1)b1 − Ntb2)(b1c + Et[Rit+1]σ̂τ (t))
b2(2b1c + Et[Rit+1]σ̂τ (t)) + (b1c + Et[Rit+1]σ̂τ (t))Dt

∂f∗
it

∂Et[Rit+1]
(A.36)

∂2q∗
it

∂Et[Rit+1]2 = − σ̂τ (t)
(

b1c(Dt − 2(Nt + 1)(1 − b1)) + (Dt − 2(Nt + 1)(1 − b1)

− b2)Et[Rit+1]σ̂τ (t)
)

·
(

b1c(b2 + Dt − 2(Nt + 1)(1 − b1)) + (Dt

− 2(Nt + 1)(1 − b1))Et[Rit+1]σ̂τ (t)
)

·
[
Dt(b1 + Nt(b1 − b2))

(b1c + Et[Rit+1]σ̂τ (t))3
]−1 ∂Q∗

t

∂Et[Rit+1]

≈ −
σ̂τ (t)

(
Dt − 2(Nt + 1)(1 − b1)

)2

b1Dt(Nt + 1)(b1c + Et[Rit+1]σ̂τ (t)) · ∂Q∗
t

∂Et[Rit+1] (A.37)

where Dt is defined in equation (A.3). As a result, the economies of aggregate scale and the

curvature of the flow-performance relation are zero when σ̂τ (t) = σthr.

Proof of LEMMA 7. The evolution of aggregate demand is given by

dQ∗
t

dt
= ∂Q∗

t

∂Nt

dNt

dt
+ ∂Q∗

t

∂σ̂τ (t)
dσ̂τ (t)

dt
(A.38)

The first product is positive, becauseNt increases over time andQ∗
t is positively correlated withNt
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(Lemma 2). In addition, σ̂τ (t) is decreasing (Proposition 1). The correlation betweenQ∗
t and σ̂τ (t)

is positive for all σ̂τ (t) > 0 values. As a result, the second term in equation (A.38) is negative,

implying in general that the sign of that equation is indeterminate. However, the asymptotic limits

for ∂Q∗
t /∂σ̂τ (t) are

lim
σ̂τ (t)→∞

[
∂Q∗

t

∂σ̂τ (t)

]
= 0 (A.39)

lim
σ̂τ (t)→0

[
∂Q∗

t

∂σ̂τ (t)

]
≈ b1 + Nt(b1 − b2)

2c(Nt + 1)(b1 − b2)2 > 0 (A.40)

As a result, only the first term in equation (A.38) describes the evolution of aggregate demand

during the early stages of the life cycle, implying that the aggregate demand increases over time.

Proof of PROPOSITION 2. Lemma 6 shows that σthr is the unique root for three key comparative

statics. These are the sensitivity of a fund’s fee to its performance, the returns to aggregate scale,

and the concavity of the flow-performance relation. During the early stage of the life cycle σ̂τ (t) >

σthr. The sensitivity of fees to performance is equal to

∂f∗
it

∂Et[Rit+1] = − b1c(2b2 + Dt) + (b2 + Dt)Et[Rit+1]σ̂τ (t)

2D2
t

(
b1c + Et[Rit+1]σ̂τ (t)

)3 ·

[
4b3

1c2(Nt + 1) + 2b1c(b0 − b2SR − Dt)σ̂τ (t) + hDtσ̂τ (t)2+

2b2
1c
(

(Nt + 1)σ̂τ (t) − 2cDt

)]
(A.41)

where SR is the sum of fund returns with b0 > b2SR from equation (A.6), and Dt is defined in

equation (A.3). When σ̂τ (t) > σthr the term hDtσ̂τ (t)2 in equation (A.41) dominates all other

terms, yielding a negative correlation between fees and performance. The asymptotic value for this

correlation is

lim
σ̂τ (t)→∞

∂f∗
it

∂Et[Rit+1] = − (2(Nt + 1)b1 − Ntb2)h
2(Nt + 1)(2b1 − b2)Et[Rit+1]2 < 0 (A.42)
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Equation (A.36) in the proof of Lemma 6 shows that the economies of aggregate scale have

opposite sign to equation (A.41). Equation (A.37) in the same proof shows that the curvature of the

flow-performance relation has opposite sign to the economies of aggregate scale, i.e. the same sign

as equation (A.41). As a result, the fund class operates under increasing returns to aggregate scale

and the flow-performance relation is concave during the early stages of the life cycle. The signs

for the two comparative statics of interest are also verified by the following asymptotic values

lim
σ̂τ (t)→∞

∂Q∗
t

∂Et[Rit+1] = b1((Nt + 1)b1 − Ntb2)h
(Nt + 1)(2b1 − b2)Et[Rit+1]2 > 0 (A.43)

lim
σ̂τ (t)→∞

∂2q∗
it

∂Et[Rit+1]2 = − b1(2(Nt + 1)b1 − (Nt + 2)b2)h
2(Nt + 1)(2b1 − b2)Et[Rit+1]3 < 0 (A.44)

for all funds i. As a result, the returns to aggregate scale are increasing and the flow-performance

is concave within the range σ̂τ (t) ∈ (σthr, ∞).

The total surplus from investment of fund i at time t is given by equation (10). Its limit for

large values of σ̂τ (t) is

lim
σ̂τ (t)→∞

TSit = q0(Et[Rit+1] − h)

Nt

Nt∏
j=1

Et[Rjt+1]

[
Et[Rit+1](b0 − ln Nt + Et[Rit+1]) − b1h

]
Nt

∏
j 6=i

Et[Rjt+1]

− b2h

∏
j 6=i

Et[Rjt+1] +
Nt−2∑
j=1

Nt−3∏
k=j

Et[Rkt+1] ·
 Nt∏

m=k+2
Et[Rmt+1]


+

Nt−2∏
j=1

Et[Rjt+1] · (Et[RNt−1,t+1] + Et[RNt,t+1])
 > 0 (A.45)

because Et[Rit+1] > h for all funds i, otherwise the expected profits would be negative. Notice

that the total surplus plateaus to a constant for large σ̂τ (t).

The surplus MSit that manager i extracts at time t during the early stages of the life cycle is
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approximately linear in σ̂τ (t), because

lim
σ̂τ (t)→∞

MSit = h2(Et[Rit+1] − 1)2σ̂τ (t)
4cEt[Rit+1]2 (A.46)

The remaining surplus to the investor from fund i at time t is ISit = TSit − MSit. As a result,

the investor surplus increases as more opportunities are exploited over time and σ̂τ (t) decreases.

The investor surplus may be larger or smaller than the manager surplus at the onset of the life cycle.

However, ISit increases over time, while MSit decreases. As a result, the investor surplus will

inevitably surpass the manager surplus.

Proof of PROPOSITION 3. Lemma 6 shows that σthr is a root both for the returns to aggregate

scale and the concavity of the flow-performance relation. During the late stage of the life cycle

σ̂τ (t) < σthr. Proposition 2 shows that

∂Q∗
t

∂Et[Rit+1] > 0 and
∂2q∗

it

∂Et[Rit+1]2 < 0 (A.47)

for all funds i and σ̂τ (t) > σthr. As a result, each of these correlations has the opposite sign

within the range σ̂τ (t) ∈ (0, σthr). Therefore, the returns to aggregate scale are decreasing and

the flow-performance is convex during the late stages of the life cycle.

The equilibrium demand for an active manager is zero when the profitable opportunities within

the fund class are depleted. As a result, the total surplus from active investing in equation (10)

also declines to zero. However, the bulk of the assets under management for every fund is invested

passively, as shown in equation (12). In the limit where σ̂τ (t) → 0, the manager invests only

in passive strategies. Since every manager performs closet indexing, the aggregate risk within the

fund class is reduced as the profitable opportunities diminish.
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